Effect of DEM Resolution, Source, Resampling Technique and Area Threshold on SWAT Outputs
Mou Leong Tan (mouleong@gmail.com),
Hilmi P. Ramli and
Tze Huey Tam
Additional contact information
Mou Leong Tan: Universiti Sains Malaysia
Hilmi P. Ramli: Wisma Air Kelantan Sdn Bhd
Tze Huey Tam: Universiti Teknologi Malaysia
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 14, No 9, 4606 pages
Abstract:
Abstract Application of an inappropriate Digital Elevation Model (DEM) might lead to uncertainty in modelling of the hydrological cycle. The novelty of this work is the development of a comprehensive framework to evaluate the effect of DEM resolution (12 to 500 m), source (TanDEM-X, SRTM, AW3D30 and ASTER GDEM2), resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority) and area threshold (1000 to 50,000 ha) on Soil and Water Assessment Tool (SWAT) outputs based on five criteria: (1) river network extraction, (2) streamflow simulation, (3) topography, slope and basin characteristics, (4) hydrological and (5) water quality simulations. Kelantan River Basin, a tropical basin in Peninsular Malaysia was selected as study area. The major findings are summarized as follows: (1) TanDEM-X had better river network extraction capability than ASTER GDEM2, (2) better monthly streamflow simulations were obtained between 20 m and 60 m DEM resolutions, with the smallest area threshold (1000 ha), (3) TanDEM-X and SRTM DEMs outperformed ASTER GDEM2 on monthly streamflow simulation, (4) DEM resolution, source and resampling technique were insensitive to most of the hydrological components, except the lateral flow, (5) area threshold was sensitive to SWAT-simulated surface runoff, soil water content and evapotranspiration, (6) DEM scenarios had a larger impact on sediment yield simulations compared to the total nitrogen and total phosphorus simulations. We recommend a preliminary assessment of DEM uncertainties on SWAT outputs to obtain more reliable modelling outputs.
Keywords: DEM; Resolution; TanDEM-X; SRTM; ASTER; SWAT (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2072-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:14:d:10.1007_s11269-018-2072-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2072-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla (sonal.shukla@springer.com) and Springer Nature Abstracting and Indexing (indexing@springernature.com).