EconPapers    
Economics at your fingertips  
 

A Hybrid Surrogate Modelling Strategy for Simplification of Detailed Urban Drainage Simulators

Mahmood Mahmoodian (), Juan Pablo Carbajal, Vasilis Bellos, Ulrich Leopold, Georges Schutz and Francois Clemens
Additional contact information
Mahmood Mahmoodian: Luxembourg Institute of Science and Technology
Juan Pablo Carbajal: Swiss Federal Institute of Aquatic Science and Technology, Eawag
Vasilis Bellos: CH2M
Ulrich Leopold: Luxembourg Institute of Science and Technology
Georges Schutz: RTC4Water
Francois Clemens: Delft University of Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 15, No 24, 5256 pages

Abstract: Abstract Urban drainage modelling typically requires development of highly detailed simulators due to the nature of various underlying surface and drainage processes, which makes them computationally too expensive. Application of such simulators is still challenging in activities such as real-time control (RTC), uncertainty quantification analysis or model calibration in which numerous simulations are required. The focus of this paper is to present a rather simple hybrid surrogate modelling (or emulation) strategy to simplify and accelerate a detailed urban drainage simulator (UDS). The proposed surrogate modelling strategy includes: a) identification of the variables to be emulated; b) development of a simplified conceptual model in which every component contributing to the variables identified in step (a) is replaced by a function; c) definition of these functions, either based on knowledge about the mechanisms of the simulator, or based on the data produced by the simulator; and finally, d) validation of the results produced by the surrogate model in comparison with the original detailed simulator. Herein, a detailed InfoWorks ICM simulator was selected for surrogate modelling. The case study area was a small urban drainage network in Luxembourg. An emulator was developed to map the rainfall time series, as input, to a storage tank volume and combined sewer overflow (CSO) in the case study network. The results showed that the introduced strategy provides a reliable method to simplify the simulator and reduce its run time significantly. For the specific case study, the emulator was approximately 1300 times faster than the original detailed simulator. For quantification of the emulation error, an ensemble of 500 rainfall scenarios with 1 month duration was generated by application of a multivariate autoregressive model for conditional simulation of rainfall time series. The results produced by the emulator were compared to the ones produced by the simulator. Finally, as an indicator of the emulation error, distributions of Nash-Sutcliffe efficiency (NSE) between the emulator and simulator results for prediction of storage tank volume and CSO flow time series were presented.

Keywords: Surrogate model; Model simplification; Emulator; Urban drainage; Combined sewer overflow (CSO) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2157-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2157-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-018-2157-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2157-4