A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions
Fereshteh Modaresi (),
Shahab Araghinejad () and
Kumars Ebrahimi ()
Additional contact information
Fereshteh Modaresi: University of Tehran
Shahab Araghinejad: University of Tehran
Kumars Ebrahimi: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 1, No 14, 243-258
Abstract:
Abstract Monthly forecasting of streamflow is of particular importance in water resources management especially in the provision of rule curves for dams. In this paper, the performance of four data-driven models with different structures including Artificial Neural Network (ANN), Generalized Regression Neural Network (GRNN), Least Square-Support Vector Regression (LS-SVR), and K-Nearest Neighbor Regression (KNN) are evaluated in order to forecast monthly inflow to Karkheh dam, Iran, in linear and non-linear conditions while the optimized values of the model parameters are determined in the same condition via the Leave-One-Out Cross Validation (LOOCV) method. Results show that the performance of the models is different in linear and nonlinear conditions; the cumulative ranking of the models according to the three assessment criteria including NSE, RMSE and R2 indicates that ANN performs best in linear conditions while LS-SVR, GRNN and KNN are in the next ranks, respectively. But in nonlinear conditions, the best performance belongs to LS-SVR, followed by KNN, ANN, and GRNN models.
Keywords: Comparative assessment; Cumulative ranking; Karkheh; Leave-One-Out Cross Validation (LOOCV); Linear and Nonlinear conditions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1807-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:1:d:10.1007_s11269-017-1807-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1807-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().