EconPapers    
Economics at your fingertips  
 

Monthly Rainfall Forecasting Using Echo State Networks Coupled with Data Preprocessing Methods

Qi Ouyang and Wenxi Lu ()
Additional contact information
Qi Ouyang: Jilin University
Wenxi Lu: Jilin University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 2, No 17, 659-674

Abstract: Abstract In this paper, two novel methods, echo state networks (ESN) and multi-gene genetic programming (MGGP), are proposed for forecasting monthly rainfall. Support vector regression (SVR) was taken as a reference to compare with these methods. To improve the accuracy of predictions, data preprocessing methods were adopted to decompose the raw rainfall data into subseries. Here, wavelet transform (WT), singular spectrum analysis (SSA) and ensemble empirical mode decomposition (EEMD) were applied as data preprocessing methods, and the performances of these methods were compared. Predictive performance of the models was evaluated based on multiple criteria. The results indicate that ESN is the most favorable method among the three evaluated, which makes it a promising alternative method for forecasting monthly rainfall. Although the performances of MGGP and SVR are less favorable, they are nevertheless good forecasting methods. Furthermore, in most cases, MGGP is inferior to SVR in monthly rainfall forecasting. WT and SSA are both favorable data preprocessing methods. WT is preferable for short-term forecasting, whereas SSA is excellent for long-term forecasting. However, EEMD tends to show inferior performance in monthly rainfall forecasting.

Keywords: Ensemble empirical mode decomposition; Multi-gene genetic programming; Singular spectrum analysis; Support vector regression; Wavelet transform (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1832-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1832-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-017-1832-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1832-1