Reducing Irrigation Deficiencies Based Optimizing Model for Multi-Reservoir Systems Utilizing Spider Monkey Algorithm
Mohammad Ehteram,
Hojat Karami () and
Saeed Farzin
Additional contact information
Mohammad Ehteram: Semnan University
Hojat Karami: Semnan University
Saeed Farzin: Semnan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 7, No 7, 2315-2334
Abstract:
Abstract Continuous droughts and water scarcity have led to the need for optimal exploitation of dams’ reservoirs. Thus, the new meta-heuristic algorithm, spider monkey, is suggested for complex modeling of the multi-reservoir system in Iran with the aim of decreasing irrigation deficiencies. Golestan and Voshmgir dams’ operations are optimized with the spider monkey algorithm. The algorithm based on the exchange of information between local and global leaders with the other monkeys which improves the convergence speed. Average deficiencies for Golestan dam is computed as 2.1 and 1.9 MCM by spider monkey algorithm while it is respectively computed as 6.7, 16.4, 11.1, 4.1, 14.6, 19 MCM by particle swarm algorithm, harmony search algorithm, imperialist competitive algorithm, water cycle algorithm, genetic algorithm, and standards operation policy method. Also, the computation time of the spider monkey algorithm is 50 and 47 s for the Golestan and Voshmgir dams while the genetic algorithm optimizes the problem in 172.6 s and 112 s and the particle swarm algorithm needs 117.4 s and 100 s for the Golestan and Voshmgir, respectively. Also, root means square error (RMSE) and mean absolute error between demand and released water for the spider monkey algorithm have the least values among the applied evolutionary algorithms. Thus, the spider monkey algorithm is suggested as an appropriate method for optimizing the operation policy for the dam and reservoir systems.
Keywords: Spider monkey algorithm; Multi-reservoir system; Reservoir operation; Water resource management (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1931-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1931-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1931-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().