An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique
Yaser Tahmasebi Birgani () and
Farhad Yazdandoost
Additional contact information
Yaser Tahmasebi Birgani: Ahvaz Jundishapur University of Medical Sciences
Farhad Yazdandoost: K. N. Toosi University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 8, No 16, 2817-2835
Abstract:
Abstract Due to the inevitability of urban flood in presence of the rainfalls exceeding design capacity of urban drainage system, resilience approach has been recently considered instead of the conventional urban drainage management. However, acceptance of resilience approach necessitates considering sustainability in the selection of urban drainage projects due to the various aspect of flood impacts. This paper presents a new integrated framework to show how urban drainage plans are resilient and sustainable. The framework consists of several indicators including technical, economic, social, environmental and planning aspects. On the other hand, the selection of suientropy of the probability distribution p i . In fact, entropy reduces the effect of plan among available suggested plans is complicated in presence of multiplicity of the indicators. A new combined-adaptive multi criteria decision making technique including combination of Adaptive analytical hierarchical process, Entropy and TOPSIS is here introduced to facilitate the decision making process as well as dealing with uncertainties due to the subjective experts’ preferences. Moreover, presented framework are applied on a part of urban drainage system of Tehran, Capital City. Four urban drainage plans are designed and suggested to be evaluated along with existing system in terms of their sustainability and resilience. The results shows the presented framework provide comprehensive information regarding the behavior of the urban drainage plans against urban floods as well as their sustainability for urban managers. In addition, presented framework facilitates and accelerate the complicated process of decision making. Therefore, it can be employed as comprehensive decision support tool for resilient and sustainable urban drainage management.
Keywords: Urban drainage management; Urban flood; Resilience; Sustainability; MCDM technique (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1960-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1960-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1960-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().