EconPapers    
Economics at your fingertips  
 

A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow

Saeid Mehdizadeh () and Ali Kozekalani Sales ()
Additional contact information
Saeid Mehdizadeh: Urmia University
Ali Kozekalani Sales: Elm-o-Fan University College of Science and Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 9, No 6, 3022 pages

Abstract: Abstract In the recent years, artificial intelligence techniques have attracted much attention in hydrological studies, while time series models are rarely used in this field. The present study evaluates the performance of artificial intelligence techniques including gene expression programming (GEP), Bayesian networks (BN), as well as time series models, namely autoregressive (AR) and autoregressive moving average (ARMA) for estimation of monthly streamflow. In addition, simple multiple linear regression (MLR) was also used. To fulfill this objective, the monthly streamflow data of Ponel and Toolelat stations located on Shafarood and Polrood Rivers, respectively in Northern Iran were used for the period of October 1964 to September 2014. In order to investigate the models’ accuracy, root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) were employed as the error statistics. The obtained results demonstrated that the single AR and ARMA time series models had better performance in comparison with the single GEP, BN and MLR methods. Furthermore, in this study, six hybrid models known as GEP-AR, GEP-ARMA, BN-AR, BN-ARMA, MLR-AR and MLR-ARMA were developed to enhance the estimation accuracy of the monthly streamflow. It was concluded that the developed hybrid models were more accurate than the corresponding single artificial intelligence and time series models. The obtained results confirmed that the integration of time series models and artificial intelligence techniques could be of use to improve the accuracy of single models in modeling purposes related to the hydrological studies.

Keywords: Estimation; Monthly streamflow; Single and hybrid models (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1970-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1970-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-018-1970-0

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1970-0