Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index
Anurag Malik (),
Anil Kumar and
Rajesh P. Singh
Additional contact information
Anurag Malik: G.B. Pant University of Agriculture & Technology
Anil Kumar: G.B. Pant University of Agriculture & Technology
Rajesh P. Singh: G.B. Pant University of Agriculture & Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 11, No 18, 3985-4006
Abstract:
Abstract Quantification and prediction of drought events are important for planning and management of water resources in coping with climate change scenarios at global and local scales. In this study, heuristic approaches including Co-Active Neuro Fuzzy Inference System (CANFIS), Multi-Layer Perceptron Neural Network (MLPNN) and Multiple Linear Regression (MLR) were utilized to predict the hydrological drought based on multi-scalar Streamflow Drought Index (SDI) at Naula and Kedar stations located in upper Ramganga River basin, Uttarakhand State, India. The SDI was calculated on 1-, 3-, 6-, 9-, 12- and 24-month time scales (SDI-1, SDI-3, SDI-6, SDI-9, SDI-12, and SDI-24) using monthly streamflow data of 33 years (1975-2007). The significant input variables (lags) for CANFIS, MLPNN, and MLR models were derived using autocorrelation and partial autocorrelation functions (ACF &PACF) at 5% significance level on SDI-1, SDI-3, SDI-6, SDI-9, SDI-12 and SDI-24 data series. The predicted values of multi-scalar SDI using CANFIS, MLPNN and MLR models were compared with the calculated values, based on root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), coefficient of correlation (COC) and Willmott index (WI). The visual interpretation was also made using line diagram, scatter diagram and Taylor diagram (TD). The results of analysis revealed that the performance of CANFIS models was the best for hydrological drought prediction at 3-, 6- and 12-month time scales for Naula station, and at 1-, 3-, 12- and 24-month time scales for Kedar station; while MLPNN was the best at 1- and 9-month time scales for Naula station, and at 6- and 9-month time scales for Kedar station. The MLR model was found to be the best at 24-month time scale for Naula station only. The results of this study could be helpful in prediction of hydrological drought on multiple time scales and decision making for remedial schemes to cope with hydrological drought at Naula and Kedar stations.
Keywords: Drought prediction; SDI; ACF and PACF; Ramganga River basin; Uttarakhand (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02350-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02350-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02350-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().