The Influence of Soil Stochastic Heterogeneity and Facility Dimensions on Stormwater Infiltration Facilities Performance
Andrea D’Aniello (),
Luigi Cimorelli and
Luca Cozzolino
Additional contact information
Andrea D’Aniello: University of Naples Federico II
Luigi Cimorelli: University of Naples Federico II
Luca Cozzolino: Parthenope University of Naples
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 7, No 10, 2399-2415
Abstract:
Abstract The progressive increase of impervious surfaces induced by urbanization altered significantly the natural hydrological cycle of urban catchments. To face the need of more sustainable and effective solutions for stormwater management and planning, Low Impact Development (LID) practices have been frequently proposed to support existing urban drainage systems. Among LID infrastructures, design and management of stormwater infiltration facilities are still characterised by a high degree of uncertainty. Since the stochastic heterogeneity of the soil may affect significantly their hydraulic performance, it is crucial to understand whether it should be accounted for in the design process. To this aim, numerical experiments under transient variably water saturated conditions were performed. Four infiltration facilities of different bottom length subjected to the same spatial variability of the intrinsic permeability field were considered. Simulations showed that the effects of stochastic heterogeneity on the hydraulic performance are dependent on the dimensions of the facility and on the correlation lengths of the intrinsic permeability field. These effects may potentially undermine the capacity to capture stormwater. To be reduced, the bottom dimensions of the facility should be higher than the horizontal correlation lengths of the intrinsic permeability field. Most strikingly, whether the stochastic heterogeneity is considered or not, the volume infiltrated through the bottom follows an increasing power law with increasing bottom length, while the average infiltration rate at the bottom follows a decaying power law.
Keywords: Stormwater infiltration facilities; Soil stochastic heterogeneity; Facility dimensions; Unsaturated zone; Numerical modelling; Low impact development (LID) practices (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02268-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02268-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02268-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().