Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management
Romulus Costache ()
Additional contact information
Romulus Costache: Research Institute of the University of Bucharest
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 9, No 17, 3239-3256
Abstract:
Abstract In Romania, as in the rest of the world, the flood frequency has increased considerably. Prahova river basin is among the most exposed catchments of the country to flood risk. It also represents the area of the present study for which the identification of surfaces with high susceptibility to flood phenomena was attempted by applying 2 hybrid models (adaptive neuro-fuzzy inference system and fuzzy support vector machine hybrid) and 2 bivariate statistical models (certainty factor and statistical index). The computation of Flood Potential Index (FPI) was possible by considering a number of 10 flood conditioning factors together with a number of 158 flood pixels and 158 non-flood pixels. Generally, the high and very high flood potential appears on around 25% of the upper and middle basin of Prahova river. The validation of the results was made through the ROC Curve model. One of the novelties of this research is related to the application of Fuzzy Support Vector Machine ensemble for the first time in a study concerning the evaluation of the susceptibility to a certain natural hazard.
Keywords: Flood potential index; Adaptive neuro-fuzzy inference system; Fuzzy support vector machine; Bivariate statistics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02301-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02301-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02301-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().