EconPapers    
Economics at your fingertips  
 

Receiving More Accurate Predictions for Longitudinal Dispersion Coefficients in Water Pipelines: Training Group Method of Data Handling Using Extreme Learning Machine Conceptions

Farid Saberi-Movahed (), Mohammad Najafzadeh () and Adel Mehrpooya ()
Additional contact information
Farid Saberi-Movahed: Graduate University of Advanced Technology
Mohammad Najafzadeh: Graduate University of Advanced Technology
Adel Mehrpooya: Shahid Bahonar University of Kerman

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 2, No 6, 529-561

Abstract: Abstract Longitudinal dispersion coefficient (LDC) is known as the most remarkable environmental variables which plays a key role in evaluation of pollution profiles in water pipelines. Even though, there is a wide range of numerical models to estimate coefficient of longitudinal dispersion, these mathematical techniques may often come in quite few inaccuracies due to complex mechanism of convection-diffusion processes in pollutant transition in water pipelines. In this research work, to obtain more accurate prediction of LDC, general structure of group method of data handling (GMDH) is modified by means of extreme learning machine (ELM) conceptions. In fact, with getting inspiration from ELM, a novel GMDH method, called GMDH network based on using extreme learning machine (GMDH-ELM), is proposed in which weighting coefficients of quadratic polynomials applied in conventional GMDH are no longer required to be updated either using back propagation technique or other evolutionary algorithms through training stage. In fact, an intermediate parameter is employed to establish a relationship between the input and output in each neuron of the GMDH model. In this way, a well-known and reliable dataset (233 experimental data) related to LDC in water network pipelines, as output vector, is applied to conduct training and testing phases. Through datasets, the Re number, the average longitudinal flow velocity, the friction factor of pipeline and the diameter of pipe are considered as inputs of the proposed approach. The results of GMDH-ELM model indicate a highly satisfying level of precision in both training and testing phases. Furthermore, feed forward structure of GMDH model was improved by particle swarm optimization (PSO) and gravitational search algorithm (GSA) to predict LDC. Through a sound judgment, a comparison is drawn between the performance of GMDH-ELM and other developed GMDH models. Moreover, several empirical equations existing in literature have been applied for comparisons. Overall, results of GMDH-ELM have permissible superiority over the other soft computing tools and conventional predictive models.

Keywords: Group method of data handling; Extreme learning machine; Evolutionary algorithms; Longitudinal dispersion coefficient; Water pipelines; Least square problem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02463-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02463-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-02463-w

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-019-02463-w