EconPapers    
Economics at your fingertips  
 

Annual and Monthly Dam Inflow Prediction Using Bayesian Networks

Parisa Noorbeh, Abbas Roozbahani () and Hamid Kardan Moghaddam
Additional contact information
Parisa Noorbeh: University of Tehran
Abbas Roozbahani: University of Tehran
Hamid Kardan Moghaddam: Water Research Institute, Ministry of Energy

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 9, No 18, 2933-2951

Abstract: Abstract Dam inflow prediction is important in terms of optimal water allocation and reduction of potential risks of floods and droughts. It is necessary to select a suitable model to reduce uncertainties in long-term and short-term predictions. In this study a probabilistic model of Bayesian Networks (BNs) was used to evaluate its efficiency in predicting inflow into reservoirs considering the uncertainties. For this purpose, continuous BNs as well as integration of K-means clustering and discrete BNs were applied for predicting magnitude and range of inflows, respectively in terms of annual and monthly prediction scenarios. In this regard, the Zayandehrud Dam reservoir in Iran was selected to test this model. To achieve the best network structure in these scenarios, different patterns were defined based on the combination of predictors. According to the magnitude predictions, the MAPE and R2 indicators in annual model were respectively 21% and 0.62 and in monthly model were respectively 49% and 0.71. According to the results of the inflow range prediction, the prediction accuracy of the annual and monthly patterns was 75% and 83%, respectively. Modelling results showed that BN performs better in predicting the inflow range than its numerical prediction. The proposed model can improve the decision making of reservoirs operation.

Keywords: Dam inflow prediction; Bayesian networks; Uncertainty; Clustering; Zayandehrud dam (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02591-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-020-02591-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-020-02591-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:9:d:10.1007_s11269-020-02591-8