Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition
Xin Liu (),
Xuefeng Sang (),
Jiaxuan Chang and
Yang Zheng
Additional contact information
Xin Liu: North China University of Water Resources and Electric Power
Xuefeng Sang: Research Office for Water Resources Management, China Institute of Water Resources and Hydropower Research
Jiaxuan Chang: Research Office for Water Resources Management, China Institute of Water Resources and Hydropower Research
Yang Zheng: Research Office for Water Resources Management, China Institute of Water Resources and Hydropower Research
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 12, No 8, 4041 pages
Abstract:
Abstract The water supply in megacities can be affected by the living habits and population mobility, so the fluctuation degree of daily water supply data is acute, which presents a great challenge to the water demand prediction. This is because that non-stationarity of daily data can have a large influence on the generalization ability of models. In this study, the Hodrick-Prescott (HP) and wavelet transform (WT) methods were used to carry out decomposition of daily data to solve the non-stationarity problem. The bidirectional long short term memory (BLSTM), seasonal autoregressive integrated moving average (SARIMA) and Gaussian radial basis function neural network (GRBFNN) were developed to carry out prediction of different subseries. The ensemble learning was introduced to improve the generalization ability of models, and prediction interval was generated based on student's t-test to cope with the variation of water supply laws. This study method was applied to the daily water demand prediction in Shenzhen and cross-validation was performed. The results show that WT is superior to HP decomposition method, but maximum decomposition level of WT should not be set too high, otherwise the trend characteristics of subseries will be weakened. Although the corona virus disease 2019 (COVID-19) outbreak caused a variation in water supply laws, this variation is still within the prediction interval. The WT and coupling models accurately predict water demand and provide the optimal mean square error (0.17%), Nash-Sutcliffe efficiency (97.21%), mean relative error (0.1), mean absolute error (3.32%), and correlation coefficient (0.99).
Keywords: BLSTM; GRBFNN; Prediction interval; SARIMA; Water demand prediction; Wavelet transform (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02927-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02927-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02927-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().