Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling
Farshad Ahmadi,
Saeid Mehdizadeh () and
Babak Mohammadi
Additional contact information
Farshad Ahmadi: Shahid Chamran University of Ahvaz
Saeid Mehdizadeh: Urmia University
Babak Mohammadi: Lund University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 12, No 13, 4127-4147
Abstract:
Abstract The present study aimed to model reconnaissance drought index (RDI) time series at three various time scales (i.e., RDI-6, RDI-9, RDI-12). Two weather stations located at Iran, namely Tehran and Dezful, were selected as the case study. First, support vector regression (SVR) was utilized as the standalone modeling technique. Then, hybrid models were implemented via coupling the standalone SVR with two bio-inspired-based techniques including firefly algorithm (FA) and whale optimization algorithm (WOA) as well as wavelet analysis (W). Accordingly, the hybrid SVR-FA, SVR-WOA, and W-SVR models were proposed. It is worth mentioning that six mother wavelets (i.e., Haar, Daubechies (db2, db4), Coifflet, Symlet, and Fejer-Korovkin) were employed in development of the hybrid W-SVR models. The performance of models was assessed through root mean square error (RMSE), mean absolute error (MAE), Willmott index (WI), and Nash-Sutcliffe efficiency (NSE). Generally, the implemented coupled models illustrated better results than the standalone SVR in modeling the RDI time series of studied locations. Besides, the Coifflet mother wavelet was found to be the best-performing wavelet. The most accurate results were achieved for RDI-12 modeling via the W-SVR utilizing db4(2) at Tehran station (RMSE = 0.253, MAE = 0.174, WI= 0.888, NSE = 0.934) and Coifflet(2) at Dezful station (RMSE = 0.301, MAE = 0.166, WI= 0.910, NSE = 0.936). As a result, the hybrid models developed in the current study, specifically W-SVR ones, can be proposed as suitable alternatives to the single SVR.
Keywords: Reconnaissance drought index; Support vector regression; Firefly algorithm; Whale optimization algorithm; Wavelet; Hybrid models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02934-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02934-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02934-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().