A Scenario-Based Management of Water Resources and Supply Systems Using a Combined System Dynamics and Compromise Programming Approach
Marzieh Momeni (),
Kourosh Behzadian (),
Hossein Yousefi () and
Sina Zahedi ()
Additional contact information
Marzieh Momeni: University of Tehran
Kourosh Behzadian: University of West London
Hossein Yousefi: University of Tehran
Sina Zahedi: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 12, No 18, 4233-4250
Abstract:
Abstract Long-term sustainability in water supply systems is a major challenge due to water resources depletion, climate change and population growth. This paper presents a scenario-based approach for performance assessment of intervention strategies in water resources and supply systems (WRSS). A system dynamics approach is used for modelling the key WRSS components and their complex interactions with natural and human systems and is combined with a multi-criteria decision analysis for sustainability performance assessment of strategies in each scenario. The scenarios combine population growth rates with groundwater extraction limits against two types of intervention strategies. The methodology was demonstrated on a real-world case study in Iran. Results show scenario-based analysis can provide suitable strategies leading to long-term sustainability of water resources for each scenario externally imposed on the water systems. For scenarios with either no threshold or one threshold of groundwater extraction limit, the only effective strategies for sustainable groundwater preservation are those involving agricultural water demand decrease with an average recovery rate of 130% for groundwater resources while other strategies of agricultural groundwater abstraction (constant/increase rates) fail to sustainably recover groundwater resources. However, all analysed strategies can provide sustainability of water resources with an average recovery rate of 33% for groundwater resources only when scenarios with two threshold limits are in place. The impact of scenarios with population growth rates on groundwater conservation is quite minor with an average recovery rate of 11% compared to scenarios of groundwater extraction limits with an average recovery rate of 79% between no threshold and two threshold limits.
Keywords: Compromise programming; Groundwater resources; Water conservation; Sustainable groundwater extraction; System dynamics; Water supply systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02942-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02942-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02942-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().