EconPapers    
Economics at your fingertips  
 

Comparing the Effects of Different Daily and Sub-Daily Downscaling Approaches on the Response of Urban Stormwater Collection Systems

Shadi Arfa (), Mohsen Nasseri () and Hassan Tavakol-Davani
Additional contact information
Shadi Arfa: University of Tehran
Mohsen Nasseri: University of Tehran
Hassan Tavakol-Davani: San Diego State University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 2, No 6, 505-533

Abstract: Abstract Change in the spatiotemporal pattern of precipitation is one the most important effects of climate change. This may result in considerable changes in urban flooding and yield a variation in the rate and volume of stormwater, resulting in the failure of stormwater collection systems. In the current paper, the effects of different downscaling methods on a built urban network have been assessed and compared. The case study is a 320-ha urban watershed with a built stormwater collection system located in the City of Tehran, Iran. Two single (SDSM and DMDM) and two multisite downscaling techniques with a daily temporal resolution have been employed and two sub daily (based of GEV distribution and MOF) methods have been used to further disaggregate the downscaled data. To evaluate the climate change impacts, three climate change scenarios, i.e. RCP 2.6, RCP 4.5 and RCP 8.5, have been used. Based on our findings, DMDM appears to outperform the other techniques in terms of our statistical similarity and dissimilarity metrics for daily downscaling. In addition, the sub-daily disaggregation method via GEV distribution delivers better results in comparison to the MOF. After simulating the stormwater collection system based on the downscaling results, we found that the number of flooded channels and junctions using RCP 8.5 results is significantly higher than RCP 4.5 and RCP 2.6 scenarios, indicating the relatively high risk of urban flooding under RCP 8.5 scenario.

Keywords: Statistical downscaling; Multisite downscaling; Climate change assessment; Urban stormwater collection system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02728-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:2:d:10.1007_s11269-020-02728-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-020-02728-9

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:35:y:2021:i:2:d:10.1007_s11269-020-02728-9