Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data
Pin-Chun Huang (),
Kuo-Lin Hsu () and
Kwan Tun Lee ()
Additional contact information
Pin-Chun Huang: National Taiwan Ocean University
Kuo-Lin Hsu: University of California, Irvine
Kwan Tun Lee: National Taiwan Ocean University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 3, No 19, 1079-1100
Abstract:
Abstract The stability and efficiency of a rainfall–runoff model are of concern for establishing a flood early warning system. To tackle any problems associated with the numerical instability or computational cost of conducting a real-time runoff prediction, the neural network (NN) method has emerged as an alternative to calculate the overland-flow depths in a watershed. Therefore, instead of developing a new algorithm of machine learning to improve the predicted accuracy, this study focuses on thoroughly exploring the influence of input data that are highly related to the flow responses in space, and then establishing a procedure to process all the input data for the NN training. The novelty of this study is as follows: (1) To improve the overall accuracy of the 2D flood prediction, geomorphological factors, such as the hydrologic length (L), the flow accumulation value (FAV), and the bed slope (S) at the location of each element extracted from the topographic dataset were considered together and were classified into multiple zones for separate trainings. (2) An optimal length of the effective rainfall condition (To) was proposed by conducting a correlation analysis to determine the most informative precipitation data. In this study, the outcomes of four types of NN models were examined and compared with one another. The results show that the simplest structure of the NN methods could achieve satisfactory predictions of flow depth, as long as the approaches of data preprocessing and model training proposed in this study were implemented.
Keywords: Flow accumulation value; Hydrologic length; Cluster analysis; Overland flow depth (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02776-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:3:d:10.1007_s11269-021-02776-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02776-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().