EconPapers    
Economics at your fingertips  
 

Experimental and Numerical Study of Discharge Capacity and Sediment Profile Upstream of Piano Key Weirs with Different Plan Geometries

Amiya Abhash () and K. K. Pandey ()
Additional contact information
Amiya Abhash: Indian Institute of Technology (BHU)
K. K. Pandey: Indian Institute of Technology (BHU)

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 5, No 9, 1529-1546

Abstract: Abstract Piano key weirs (PKWs) are an improved form of labyrinth weirs, which are becoming popular as a more hydraulically efficient and cost-effective type of weir over its counterparts for both spillway and river flow conditions. More than thirty PKWs are already in construction worldwide, with constructions in India at Swara Kuddu. More than twenty parameters influence the flow over a PKW, and as such, the flow hydraulics near PKW is complex. It is imperative to study the performance of different shapes of PKW to know which shape offers more hydraulically and cost-effective advantages over other shapes. The present study combines the experimental and numerical study of discharge capacity and sediment carrying capacity of the different plan geometries of PKW. The experimental study of the discharging capacity of PKW has been carried out at eighteen discharge points for three plan geometries of PKW. A numerical study using ANSYS FLUENT has also been carried out at five discharges and compared with the experimental results. Vertical velocity near a weir is an essential factor facilitating the uplift of sediment. Sediment profile in the channel has been studied at three discharges experimentally for two types of PKWs: RPKW and TPKW6, all for free-flow conditions. The numerical study has also been carried out at these experimental discharges for studying the vertical component of velocity (v) upstream of PKW. An attempt has been made to isolate critical areas where the sediments are being lifted by the turbulence mechanism, thus helping them pass over the weir. The study shows PKW with a rectangular plan (RPKW) to be more hydraulically efficient than TPKWs with six-degree and thirteen-degree lateral crest variations (TPKW6 & TPKW13). The study also shows RPKW to be more self-cleaning in nature than its trapezoidal counterpart (TPKW6). Numerical study shows a close resemblance to the experimental results with errors well within permissible limits implying its greater use in ascertaining complex flows around hydraulic structures.

Keywords: Coefficient of discharge; Rectangular and trapezoidal PKW; Hydraulic characteristics; Numerical model; Sediment profile; Self-cleaning capacity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02800-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02800-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-021-02800-y

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02800-y