An Uncertainty-Based Regional Comparative Analysis on the Performance of Different Bias Correction Methods in Statistical Downscaling of Precipitation
Reyhaneh Rahimi (),
Hassan Tavakol-Davani () and
Mohsen Nasseri ()
Additional contact information
Reyhaneh Rahimi: San Diego State University
Hassan Tavakol-Davani: San Diego State University
Mohsen Nasseri: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 8, No 13, 2503-2518
Abstract:
Abstract Statistical downscaling of General Circulation Models (GCM) simulations is widely used for projecting precipitation at different spatiotemporal scales. However, the downscaling process is linked with different source of uncertainty including structural/parametric uncertainty of the model and output uncertainty. This research proposes a novel framework to assess the parametric uncertainty of downscaling model, and used this framework to assess the performance of different bias correction methods linked to the regression-based statistical downscaling model. The used downscaling framework in the current paper is Statistical Downscaling Model (SDSM). The conventional bias correction method linked with SDSM is the Variance InFlation method (VIF), this paper substitutes this method with three different bias correction methods including Local Intensity Scaling (LOCI), Power Transformation (PT), and Quantile Mapping (QM) to assess the associated parametric and global uncertainty of each method in different climate by using a new approach. The proposed method is applied to six different stations located in Iran and United States with different climate status. Average Relative Interval Length (ARIL), P-level, and Normalized Uncertainty Efficiency (NUE) are used as uncertainty indicators to evaluate the results. Results represent that in every assessed climate class, LOCI, and PT, work better than conventional VIF in both amount and occurrence modules of SDSM framework. More precisely, LOCI works better in station that has wet summer, while PT performs well in the stations where there is no or very limited precipitation in summer. Substituting LOCI with VIF, result in increasing the value of NUE by at least factor of 3 in occurrence and amount model which means the significant reduction in structural uncertainty. Also applying PT in arid regions improves the NUE indicator at least by factor 2 in occurrence and amount model and by factor 3 in output uncertainty assessment, and results in less parametric and output uncertainty. Results illustrate the important role of bias correction approaches in reducing structural, and output uncertainty and improving the statistical efficiency of the downscaling model.
Keywords: Uncertainty analysis; Bias correction; SDSM; Downscaling; Climate change (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02844-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:8:d:10.1007_s11269-021-02844-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02844-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().