Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach
Mehdi Jamei (),
Mumtaz Ali (),
Anurag Malik (),
Ramendra Prasad (),
Shahab Abdulla () and
Zaher Mundher Yaseen ()
Additional contact information
Mehdi Jamei: Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz
Mumtaz Ali: Deakin University
Anurag Malik: Regional Research Station
Ramendra Prasad: The University of Fiji
Shahab Abdulla: USQ College, University of Southern Queensland
Zaher Mundher Yaseen: Universiti Kebangsaan Malaysia
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2022, vol. 36, issue 12, No 12, 4637-4676
Abstract:
Abstract Accurate water level forecasting is important to understand and provide an early warning of flood risk and discharge. It is also crucial for many plants and animal species that needs specific ranges of water level. This research focused on long term multi-step ahead forecasting of daily flood water level in duration of (2005–2021) at two stations (i.e., Baryulgil and Lilydale) of the Clarence River, in Australia, introducing a novel hybrid framework coupling time varying filter-based empirical mode decomposition (TVF-EMD), classification and regression trees (CART) feature selection, and four advanced machine learning (ML) models. The implemented ML approaches are including Long-Short Term Memory (LSTM), cascaded forward neural network (CFNN), gradient boosting decision tree (GBDT), and multivariate adaptive regression spline (MARS). Here, original time series of WL in each station was decomposed into the optimal intrinsic mode functions (IMFs) using the TVF-EMD technique and the significant lagged-time components for two desired horizons (t + 1 and t + 7 time ahead) in each station was extracted by using the CART-feature selection method. Then, the IMFs and corresponded residual obtained from the pre-processing procedure were separately implemented to feed the ML models and produce the CART-TVF-EMD-LSTM, CART-TVF-EMD-CFNN, CART-TVF-EMD-MARS, and CART-TVF-EMD-GBDT by assembling all the individual sub-sequences outcomes. Several goodness-of-fit metrics such as correlation coefficient (R), Mean absolute percentage error (MAPE), and Kling-Gupta efficiency (KGE) and the infographic tools and diagnostic analysis were employed to evaluate the robustness of the provided techniques. The outcomes of developed expert systems ascertained that CART-TVF-EMD-CFNN for one- and seven-day horizons in both stations outperformed the CART-TVF-EMD-MARS, CART-TVF-EMD-LSTM, CART-TVF-EMD-GBDT, and all the standalone counterpart models (i.e., CFNN, MARS, LSTM, and GBDT) respectively. As one of the most important achievements of this research, the LSTM did not lead to superior and promising results in the long-term highly nonstationary time series.
Keywords: Flood warning; TVF-EMD; CFNN; Feature selection; LSTM; MARS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-022-03270-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03270-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-022-03270-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().