Impact of Climate Change on Crop Irrigation Requirements in Arid Regions
Maha Alotaibi,
Nawaf S. Alhajeri (),
Fahad M. Al-Fadhli,
Salem Al Jabri and
Mohamed Gabr
Additional contact information
Maha Alotaibi: Kuwait University
Nawaf S. Alhajeri: Kuwait University
Fahad M. Al-Fadhli: Kuwait University
Salem Al Jabri: Sultan Qaboos University
Mohamed Gabr: Higher Institute for Engineering and Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2023, vol. 37, issue 5, No 8, 1965-1984
Abstract:
Abstract The nations that comprise the Gulf Cooperation Council (GCC) are located in one of the most water-stressed regions in the world. This region has faced serious socioeconomic and environmental development issues as a result of its increasing water demand over time. The extreme aridity, high rates of evaporation, and scarcity of nonrenewable groundwater resources in the GCC countries pose a significant threat to food security. This study aims to explore the impact of climate change on the potential availability of irrigation water in the State of Kuwait, which serves as an example of all GCC nations. A modeling scheme using CropWat8 was developed to study the impact of four climate change scenarios (encompassing the past, present, and future) on the net and gross irrigation water requirements (NIWR and GIWR) for selected agricultural crops, while also determining optimum irrigation schedules. Scenario 1 represented past climate conditions (1996–2006), while Scenario 2 represented the current situation (2007–2021). Projected scenarios (3 and 4) were analyzed using Representative Concentration Pathways (RCP) 4.5 and RCP 8.5, which were adopted by the IPCC to project the concentrations of greenhouse gases (GHG) emissions for 2060. The simulation results showed that compared with the current GHG levels, the increase in GHG emissions also increased the demand for NIWR by a minimum of 8.2% and a maximum of 15% for the same agricultural areas and cropping patterns. The measured GIWR in the field was 1915 m3, while the simulated NIWR was 1724 m3. With a drip irrigation efficiency of 90%, the model adequately demonstrated the validity of the CropWat8 package for simulating the climate impact on crop water requirements with a precision of approximately 92.2%. These findings suggest that the GCC countries should develop strategies to minimize GHG emissions and adopt innovative solutions for better management of water resources.
Keywords: Evapotranspiration; Net irrigation water requirement; Climate change; FAO CropWat8 model; Arid regions; Drip irrigation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-023-03465-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:37:y:2023:i:5:d:10.1007_s11269-023-03465-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-023-03465-5
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().