A time dynamic pair copula construction: with financial applications
Andrew Vesper
Applied Financial Economics, 2012, vol. 22, issue 20, 1697-1711
Abstract:
A recent technology in the statistics and econometrics literature is the Pair-Copula Construction (PCC), an extremely flexible modelling technique for capturing complex, but static, multivariate dependency. There are several available tools for time-varying bivariate copulas, but none for time-varying multivariate copulas in more than two dimensions. We use a Bayesian framework to extend the PCC to account for time dynamic dependence structures, introducing time dynamics to the multivariate copula through its PCC decomposition. In particular, we model the time series of a transformation of select parameters of the PCC as a first order autoregressive model (AR(1)) and conduct inference using a Markov Chain Monte Carlo (MCMC) algorithm. The Bayesian approach proves to be a powerful tool for estimating parameters, despite some additional computational effort. We use financial data to illustrate empirical evidence for the existence of time dynamic dependence structures, to show improved out-of-sample forecasts for our time dynamic PCC relative to the current time static PCC models, and to compare the relative performance of dynamic and static PCC models for Value at Risk (VaR) measures.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/09603107.2012.671922 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apfiec:v:22:y:2012:i:20:p:1697-1711
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAFE20
DOI: 10.1080/09603107.2012.671922
Access Statistics for this article
Applied Financial Economics is currently edited by Anita Phillips
More articles in Applied Financial Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().