Computation of Greeks and Multidimensional Density Estimation for Asset Price Models with Time-Changed Brownian Motion
Reiichiro Kawai and
Arturo Kohatsu-Higa
Applied Mathematical Finance, 2010, vol. 17, issue 4, 301-321
Abstract:
The main purpose of this article is to propose computational methods for Greeks and the multidimensional density estimation for an asset price dynamics model defined with time-changed Brownian motions. Our approach is based on an application of the Malliavin integration-by-parts formula on the Gaussian space conditioning on the jump component. Some numerical examples are presented to illustrate the effectiveness of our results.
Keywords: Integration-by-parts formula; Malliavin calculus; normal inverse Gaussian process; time-changed Brownian motion; variance gamma process (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/13504860903336429 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:17:y:2010:i:4:p:301-321
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20
DOI: 10.1080/13504860903336429
Access Statistics for this article
Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger
More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().