EconPapers    
Economics at your fingertips  
 

Market calibration under a long memory stochastic volatility model

Jan Pospíšil and Tomáš Sobotka

Applied Mathematical Finance, 2016, vol. 23, issue 5, 323-343

Abstract: In this article, we study a long memory stochastic volatility model (LSV), under which stock prices follow a jump-diffusion stochastic process and its stochastic volatility is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account most of the observed market aspects and unlike many other approaches, the volatility clustering phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized volatility time-series across different asset classes and time periods. In the first part of the article, we derive an alternative formula for pricing European securities. The formula enables us to effectively price European options and to calibrate the model to a given option market. In the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach – the Heston model. To test stability of calibrated parameters and to verify calibration results from previous data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1080/1350486X.2017.1279977 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:apmtfi:v:23:y:2016:i:5:p:323-343

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAMF20

DOI: 10.1080/1350486X.2017.1279977

Access Statistics for this article

Applied Mathematical Finance is currently edited by Professor Ben Hambly and Christoph Reisinger

More articles in Applied Mathematical Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:apmtfi:v:23:y:2016:i:5:p:323-343