Forecasting the realized volatility in the Chinese stock market: further evidence
Wang Pu,
Yixiang Chen and
Feng Ma
Applied Economics, 2016, vol. 48, issue 33, 3116-3130
Abstract:
In this study, the impact of noise and jump on the forecasting ability of volatility models with high-frequency data is investigated. A signed jump variation is added as an additional explanatory variable in the volatility equation according to the sign of return. These forecasting performances of models with jumps are compared with those without jumps. Being applied to the Chinese stock market, we find that the jump variation has a significant in-sample predictive power to volatility and the predictive power of the negative one is greater than the positive one. Furthermore, out-of-sample evidence based on the fresh model confidence set (MCS) test indicates that the incorporation of singed jumps in volatility models can significantly improve their forecasting ability. In particular, among the realized variance (RV)-based volatility models and generalized autoregressive conditional heteroscedasticity (GARCH) class models, the heterogeneous autoregressive model of realized volatility (HAR-RV) model with the jump test and a decomposed signed jump variation have better out-of-sample forecasting performance. Finally, the use of the decomposed signed jump variations in predictive regressions can improve the economic value of realized volatility forecasts.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2015.1136394 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:48:y:2016:i:33:p:3116-3130
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20
DOI: 10.1080/00036846.2015.1136394
Access Statistics for this article
Applied Economics is currently edited by Anita Phillips
More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().