EconPapers    
Economics at your fingertips  
 

Forecasting the volatility of the German stock market: New evidence

Chao Liang, Yi Zhang and Yaojie Zhang

Applied Economics, 2022, vol. 54, issue 9, 1055-1070

Abstract: This study mainly explores whether the implied volatility indices of international stock markets and crude oil contain useful information in predicting the realized volatility (RV) of the German stock market. We use the standard predictive regression model, principal component analysis, five combination methods, and two shrinkage models to generate forecasts of DAX index volatility. First, the in-sample results indicate that almost all of the implied volatility indices considered have significant predictive power for the RV of the German DAX index. Second, the out-of-sample predictions suggest that the two shrinkage models exhibit the best out-of-sample predictions. Furthermore, a mean-variance investor can allocate portfolios through volatility predictions based on shrinkage models to achieve considerable economic gains. Finally, our conclusions are supported by numerous robustness checks.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00036846.2021.1975027 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:applec:v:54:y:2022:i:9:p:1055-1070

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RAEC20

DOI: 10.1080/00036846.2021.1975027

Access Statistics for this article

Applied Economics is currently edited by Anita Phillips

More articles in Applied Economics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:applec:v:54:y:2022:i:9:p:1055-1070