Forecasting hedge fund volatility: a Markov regime-switching approach
Szabolcs Blazsek and
Anna Downarowicz
The European Journal of Finance, 2013, vol. 19, issue 4, 243-275
Abstract:
The article addresses forecasting volatility of hedge fund (HF) returns by using a non-linear Markov-Switching GARCH (MS-GARCH) framework. The in- and out-of-sample, multi-step ahead volatility forecasting performance of GARCH(1,1) and MS-GARCH(1,1) models is compared when applied to 12 global HF indices over the period of January 1990 to October 2010. The results identify different regimes with periods of high and low volatility for most HF indices. In-sample estimation results reveal a superior performance of the MS-GARCH model. The findings show that regime switching is related to structural changes in the market factor for most strategies. Out-of-sample forecasting shows that the MS-GARCH formulation provides more accurate volatility forecasts for most forecast horizons and for most HF strategies. Inclusion of MS dynamics in the GARCH specification highly improves the volatility forecasts for those strategies that are particularly sensitive to general macroeconomic conditions, such as Distressed Restructuring and Merger Arbitrage.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1351847X.2011.653576 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:eurjfi:v:19:y:2013:i:4:p:243-275
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/REJF20
DOI: 10.1080/1351847X.2011.653576
Access Statistics for this article
The European Journal of Finance is currently edited by Chris Adcock
More articles in The European Journal of Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().