EconPapers    
Economics at your fingertips  
 

Finite element investigation of implant-supported fixed partial prosthesis in the premaxilla in immediately loaded and osseointegrated states

I. Hasan, F. Heinemann, S. Reimann, L. Keilig and C. Bourauel

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 11, 979-985

Abstract: The aim of this study was to gain insight into the behaviour of the stresses and strains at the bone–implant interface of an implant-supported fixed partial prosthesis (FPP) in the premaxilla under immediate loading and osseointegrated conditions. Finite element models of a four-unit FPP were generated. An extreme condition was simulated, using only two immediately loaded implants in order to derive recommendations for possible clinical application. Straight and 20°-angled abutments and bonded or sliding contact between the bridge and abutment were simulated. In addition, two models were generated with two completely osseointegrated implants. A 150 N load to the prosthesis at a 45° angle to the long axis of each implant was applied. Minor differences were observed in implant displacements, stress and strain distributions of the two abutment designs. However, bone loading exceeded the physiological limits, including a risk of bone atrophy. A considerable decrease in implant displacements and bone loading was observed in the osseointegrated cases. An FPP supported by only two implants cannot be recommended for immediate loading.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.503959 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:11:p:979-985

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.503959

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:11:p:979-985