EconPapers    
Economics at your fingertips  
 

CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea

M. Malvè, S. Chandra, J. López-Villalobos, E. Finol, A. Ginel and M. Doblaré

Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 2, 198-216

Abstract: A computational fluid dynamics model of a healthy, a stenotic and a post-operatory stented human trachea was developed to study the respiration under physiological boundary conditions. For this, outflow pressure waveforms were computed from patient-specific spirometries by means of a method that allows to compute the peripheral impedance of the truncated bronchial generation, modelling the lungs as fractal networks. Intratracheal flow pattern was analysed under different scenarios. First, results obtained using different outflow conditions were compared for the healthy trachea in order to assess the importance of using impedance-based conditions. The resulted intratracheal pressures were affected by the different boundary conditions, while the resulted velocity field was unaffected. Impedance conditions were finally applied to the diseased and the stented trachea. The proposed impedance method represents an attractive tool to compute physiological pressure conditions that are not possible to extract in vivo. This method can be applied to healthy, pre- and post-operatory tracheas showing the possibility of predicting, through numerical simulation, the flow and the pressure field before and after surgery.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.615743 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:2:p:198-216

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2011.615743

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:2:p:198-216