EconPapers    
Economics at your fingertips  
 

Bending and pressurisation test of the human aortic arch: experiments, modelling and simulation of a patient-specific case

Claudio M. García-Herrera, Diego J. Celentano and Marcela A. Cruchaga

Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 8, 830-839

Abstract: This work presents experiments, modelling and simulation aimed at describing the mechanical behaviour of the human aortic arch during the bending and pressurisation test. The main motivation is to describe the material response of this artery when it is subjected to large quasi-static deformations in three different stages: bending, axial stretching and internal pressurisation. The sample corresponds to a young artery without cardiovascular pathologies. The pressure levels are within the normal and hypertension physiological ranges. The two principal findings of this work are firstly, the material characterisation performed via tensile test measurements that serve to derive the material parameters of a hyperelastic isotropic constitutive model and, secondly, the assessment of these material parameters in the simulation of the bending and pressurisation test. Overall, the reported material characterisation was found to provide a realistic description of the mechanical behaviour of the aortic arch under severe complex loading conditions considered in the bending and pressurisation test.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.641123 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:8:p:830-839

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2011.641123

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:8:p:830-839