EconPapers    
Economics at your fingertips  
 

Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta

A.D. Caballero and S. Laín

Computer Methods in Biomechanics and Biomedical Engineering, 2015, vol. 18, issue 11, 1200-1216

Abstract: Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model approximates the blood viscosity and WSS calculations in a more satisfactory way than the other non-Newtonian models at low shear rates, a cautious approach is given in the use of this blood viscosity model. Finally, some preliminary transient results are presented.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2014.887698 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:18:y:2015:i:11:p:1200-1216

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2014.887698

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:18:y:2015:i:11:p:1200-1216