EconPapers    
Economics at your fingertips  
 

Jackknife-after-bootstrap regression influence diagnostics

Michael Martin and Steven Roberts

Journal of Nonparametric Statistics, 2010, vol. 22, issue 2, 257-269

Abstract: We propose a bootstrap approach to gauging the size of regression influence measures. The bootstrap cut-offs generated are based on approximating the sampling distribution of the respective measures under resampling, work well for small samples, and allow for features such as asymmetric cut-offs. The bootstrap method uses Efron's jackknife-after-bootstrap idea to deal with the issue of an influential point contaminating the resamples from which cut-offs are calculated. The method is illustrated through both real-world examples and a simulation study, the results of which suggest that the bootstrap method provides a reliable alternative to traditional methods particularly in small to moderate samples.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485250903287906 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:22:y:2010:i:2:p:257-269

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485250903287906

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:22:y:2010:i:2:p:257-269