Asymptotics for penalised splines in generalised additive models
Takuma Yoshida and
Kanta Naito
Journal of Nonparametric Statistics, 2014, vol. 26, issue 2, 269-289
Abstract:
This paper discusses asymptotic theory for penalised spline estimators in generalised additive models. The purpose of this paper is to establish the asymptotic bias and variance as well as the asymptotic normality of the ridge-corrected penalised spline estimator. Furthermore, the asymptotics for the penalised quasi-likelihood fit in mixed models are also discussed.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.899360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:2:p:269-289
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.899360
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().