EconPapers    
Economics at your fingertips  
 

Improved nonparametric tolerance intervals based on interpolated and extrapolated order statistics

Derek S. Young and Thomas Mathew

Journal of Nonparametric Statistics, 2014, vol. 26, issue 3, 415-432

Abstract: The standard approach to construct nonparametric tolerance intervals is to use the appropriate order statistics, provided a minimum sample size requirement is met. However, it is well-known that this traditional approach is conservative with respect to the nominal level. One way to improve the coverage probabilities is to use interpolation. However, the extension to the case of two-sided tolerance intervals, as well as for the case when the minimum sample size requirement is not met, have not been studied. In this paper, an approach using linear interpolation is proposed for improving coverage probabilities for the two-sided setting. In the case when the minimum sample size requirement is not met, coverage probabilities are shown to improve by using linear extrapolation. A discussion about the effect on coverage probabilities and expected lengths when transforming the data is also presented. The applicability of this approach is demonstrated using three real data sets.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.906594 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:3:p:415-432

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2014.906594

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:26:y:2014:i:3:p:415-432