On tail index estimation based on multivariate data
A. Dematteo and
S. Clémençon
Journal of Nonparametric Statistics, 2016, vol. 28, issue 1, 152-176
Abstract:
This article is devoted to the study of tail index estimation based on i.i.d. multivariate observations, drawn from a standard heavy-tailed distribution, that is, of which Pareto-like marginals share the same tail index. A multivariate central limit theorem for a random vector, whose components correspond to (possibly dependent) Hill estimators of the common tail index α , is established under mild conditions. We introduce the concept of (standard) heavy-tailed random vector of tail index α and show how this limit result can be used in order to build an estimator of α with small asymptotic mean squared error, through a proper convex linear combination of the coordinates. Beyond asymptotic results, simulation experiments illustrating the relevance of the approach promoted are also presented.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2015.1124105 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:1:p:152-176
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2015.1124105
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().