Automatic and location-adaptive estimation in functional single-index regression
Silvia Novo,
Germán Aneiros and
Philippe Vieu
Journal of Nonparametric Statistics, 2019, vol. 31, issue 2, 364-392
Abstract:
This paper develops a new automatic and location-adaptive procedure for estimating regression in a Functional Single-Index Model (FSIM). This procedure is based on k-Nearest Neighbours (kNN) ideas. The asymptotic study includes results for automatically data-driven selected number of neighbours, making the procedure directly usable in practice. The local feature of the kNN approach insures higher predictive power compared with usual kernel estimates, as illustrated in some finite sample analysis. As by-product, we state as preliminary tools some new uniform asymptotic results for kernel estimates in the FSIM model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2019.1567726 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:2:p:364-392
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2019.1567726
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().