The use of auxiliary variables in capture-recapture modelling: An overview
Kenneth Pollock
Journal of Applied Statistics, 2002, vol. 29, issue 1-4, 85-102
Abstract:
I review the use of auxiliary variables in capture-recapture models for estimation of demographic parameters (e.g. capture probability, population size, survival probability, and recruitment, emigration and immigration numbers). I focus on what has been done in current research and what still needs to be done. Typically in the literature, covariate modelling has made capture and survival probabilities functions of covariates, but there are good reasons also to make other parameters functions of covariates as well. The types of covariates considered include environmental covariates that may vary by occasion but are constant over animals, and individual animal covariates that are usually assumed constant over time. I also discuss the difficulties of using time-dependent individual animal covariates and some possible solutions. Covariates are usually assumed to be measured without error, and that may not be realistic. For closed populations, one approach to modelling heterogeneity in capture probabilities uses observable individual covariates and is thus related to the primary purpose of this paper. The now standard Huggins-Alho approach conditions on the captured animals and then uses a generalized Horvitz-Thompson estimator to estimate population size. This approach has the advantage of simplicity in that one does not have to specify a distribution for the covariates, and the disadvantage is that it does not use the full likelihood to estimate population size. Alternately one could specify a distribution for the covariates and implement a full likelihood approach to inference to estimate the capture function, the covariate probability distribution, and the population size. The general Jolly-Seber open model enables one to estimate capture probability, population sizes, survival rates, and birth numbers. Much of the focus on modelling covariates in program MARK has been for survival and capture probability in the Cormack-Jolly-Seber model and its generalizations (including tag-return models). These models condition on the number of animals marked and released. A related, but distinct, topic is radio telemetry survival modelling that typically uses a modified Kaplan-Meier method and Cox proportional hazards model for auxiliary variables. Recently there has been an emphasis on integration of recruitment in the likelihood, and research on how to implement covariate modelling for recruitment and perhaps population size is needed. The combined open and closed 'robust' design model can also benefit from covariate modelling and some important options have already been implemented into MARK. Many models are usually fitted to one data set. This has necessitated development of model selection criteria based on the AIC (Akaike Information Criteria) and the alternative of averaging over reasonable models. The special problems of estimating over-dispersion when covariates are included in the model and then adjusting for over-dispersion in model selection could benefit from further research.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120108430 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:1-4:p:85-102
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120108430
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().