Modified regression coefficient analysis for repeated binary measurements
Chul Ahn,
Sin-Ho Jung and
Seung-Ho Kang
Journal of Applied Statistics, 2002, vol. 29, issue 5, 703-710
Abstract:
Myers & Broyles (2000a, 2000b) illustrate that regression coefficient analysis (RCA) is a viable alternative to a generalized estimating equation (GEE) in the analysis of correlated binomial data. Since the regression coefficients (b i ' s ) may have different precisions, we modify RCA by weighting b i ' s by the inverses of their variances for statistical optimality. We perform the simulation study to evaluate the performance of RCA, modified RCA and GEE in terms of empirical type I errors and empirical powers of the regression coefficients in repeated binary measurement designs with and without dropouts. Two thousand data sets are generated using autoregressive (AR(1)) and compound symmetry (CS) correlation structures. We compare the type I errors and powers of RCA, modified RCA and GEE for the analysis of repeated binary measurement data as affected by different dropout mechanisms such as random dropouts and treatment dependent dropouts.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760120098766 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:29:y:2002:i:5:p:703-710
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760120098766
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().