Applications of a new power normal family
Takafumi Isogai
Journal of Applied Statistics, 2005, vol. 32, issue 4, 421-436
Abstract:
The main purpose of this paper is to give an algorithm to attain joint normality of non-normal multivariate observations through a new power normal family introduced by the author (Isogai, 1999). The algorithm tries to transform each marginal variable simultaneously to joint normality, but due to a large number of parameters it repeats a maximization process with respect to the conditional normal density of one transformed variable given the other transformed variables. A non-normal data set is used to examine performance of the algorithm, and the degree of achievement of joint normality is evaluated by measures of multivariate skewness and kurtosis. Besides the above topic, making use of properties of our power normal family, we discuss not only a normal approximation formula of non-central F distributions in the frame of regression analysis but also some decomposition formulas of a power parameter, which appear in a Wilson-Hilferty power transformation setting.
Keywords: Power normal family; non-normality; joint normality; measures of multivariate skewness and kurtosis (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500079233 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:32:y:2005:i:4:p:421-436
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500079233
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().