A Bayesian False Discovery Rate for Multiple Testing
Alice Whittemore
Journal of Applied Statistics, 2007, vol. 34, issue 1, 1-9
Abstract:
Case-control studies of genetic polymorphisms and gene-environment interactions are reporting large numbers of statistically significant associations, many of which are likely to be spurious. This problem reflects the low prior probability that any one null hypothesis is false, and the large number of test results reported for a given study. In a Bayesian approach to the low prior probabilities, Wacholder et al. (2004) suggest supplementing the p-value for a hypothesis with its posterior probability given the study data. In a frequentist approach to the test multiplicity problem, Benjamini & Hochberg (1995) propose a hypothesis-rejection rule that provides greater statistical power by controlling the false discovery rate rather than the family-wise error rate controlled by the Bonferroni correction. This paper defines a Bayes false discovery rate and proposes a Bayes-based rejection rule for controlling it. The method, which combines the Bayesian approach of Wacholder et al. with the frequentist approach of Benjamini & Hochberg, is used to evaluate the associations reported in a case-control study of breast cancer risk and genetic polymorphisms of genes involved in the repair of double-strand DNA breaks.
Keywords: Bayes; breast cancer; false discovery rate; false positive report probability; haplotypes; multiple comparisons; single nucleotide polymorphism (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600994745 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:1:p:1-9
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600994745
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().