On adaptive linear regression
Arnab Maity and
Michael Sherman
Journal of Applied Statistics, 2008, vol. 35, issue 12, 1409-1422
Abstract:
Ordinary least squares (OLS) is omnipresent in regression modeling. Occasionally, least absolute deviations (LAD) or other methods are used as an alternative when there are outliers. Although some data adaptive estimators have been proposed, they are typically difficult to implement. In this paper, we propose an easy to compute adaptive estimator which is simply a linear combination of OLS and LAD. We demonstrate large sample normality of our estimator and show that its performance is close to best for both light-tailed (e.g. normal and uniform) and heavy-tailed (e.g. double exponential and t3) error distributions. We demonstrate this through three simulation studies and illustrate our method on state public expenditures and lutenizing hormone data sets. We conclude that our method is general and easy to use, which gives good efficiency across a wide range of error distributions.
Keywords: adaptive regression; heavy-tailed error; least absolute deviation regression; mean squared error; ordinary least-squares regression (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802382475 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:12:p:1409-1422
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802382475
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().