Notes on odds ratio estimation for a randomized clinical trial with noncompliance and missing outcomes
Kung-Jong Lui and
Kuang-Chao Chang
Journal of Applied Statistics, 2010, vol. 37, issue 12, 2057-2071
Abstract:
The odds ratio (OR) has been recommended elsewhere to measure the relative treatment efficacy in a randomized clinical trial (RCT), because it possesses a few desirable statistical properties. In practice, it is not uncommon to come across an RCT in which there are patients who do not comply with their assigned treatments and patients whose outcomes are missing. Under the compound exclusion restriction, latent ignorable and monotonicity assumptions, we derive the maximum likelihood estimator (MLE) of the OR and apply Monte Carlo simulation to compare its performance with those of the other two commonly used estimators for missing completely at random (MCAR) and for the intention-to-treat (ITT) analysis based on patients with known outcomes, respectively. We note that both estimators for MCAR and the ITT analysis may produce a misleading inference of the OR even when the relative treatment effect is equal. We further derive three asymptotic interval estimators for the OR, including the interval estimator using Wald's statistic, the interval estimator using the logarithmic transformation, and the interval estimator using an ad hoc procedure of combining the above two interval estimators. On the basis of a Monte Carlo simulation, we evaluate the finite-sample performance of these interval estimators in a variety of situations. Finally, we use the data taken from a randomized encouragement design studying the effect of flu shots on the flu-related hospitalization rate to illustrate the use of the MLE and the asymptotic interval estimators for the OR developed here.
Keywords: odds ratio; noncompliance; missing outcomes; interval estimators; ITT analysis (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903214411 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:12:p:2057-2071
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903214411
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().