Bayesian hierarchical model for the prediction of football results
Gianluca Baio and
Marta Blangiardo
Journal of Applied Statistics, 2010, vol. 37, issue 2, 253-264
Abstract:
The problem of modelling football data has become increasingly popular in the last few years and many different models have been proposed with the aim of estimating the characteristics that bring a team to lose or win a game, or to predict the score of a particular match. We propose a Bayesian hierarchical model to fulfil both these aims and test its predictive strength based on data about the Italian Serie A 1991-1992 championship. To overcome the issue of overshrinkage produced by the Bayesian hierarchical model, we specify a more complex mixture model that results in a better fit to the observed data. We test its performance using an example of the Italian Serie A 2007-2008 championship.
Keywords: Bayesian hierarchical models; overshrinkage; football data; bivariate Poisson distribution; Poisson-log normal model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802684177 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:2:p:253-264
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802684177
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().