EconPapers    
Economics at your fingertips  
 

Optimizing a control plan using a structural equation model with an application to statistical process analysis

Manabu Kuroki

Journal of Applied Statistics, 2012, vol. 39, issue 3, 673-694

Abstract: In the case where non-experimental data are available from an industrial process and a directed graph for how various factors affect a response variable is known based on a substantive understanding of the process, we consider a problem in which a control plan involving multiple treatment variables is conducted in order to bring a response variable close to a target value with variation reduction. Using statistical causal analysis with linear (recursive and non-recursive) structural equation models, we configure an optimal control plan involving multiple treatment variables through causal parameters. Based on the formulation, we clarify the causal mechanism for how the variance of a response variable changes when the control plan is conducted. The results enable us to evaluate the effect of a control plan on the variance of a response variable from non-experimental data and provide a new application of linear structural equation models to engineering science.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.610444 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:3:p:673-694

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2011.610444

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:3:p:673-694