Integer autoregressive models with structural breaks
Akanksha S. Kashikar,
Neelabh Rohan and
T.V. Ramanathan
Journal of Applied Statistics, 2013, vol. 40, issue 12, 2653-2669
Abstract:
Even though integer-valued time series are common in practice, the methods for their analysis have been developed only in recent past. Several models for stationary processes with discrete marginal distributions have been proposed in the literature. Such processes assume the parameters of the model to remain constant throughout the time period. However, this need not be true in practice. In this paper, we introduce non-stationary integer-valued autoregressive (INAR) models with structural breaks to model a situation, where the parameters of the INAR process do not remain constant over time. Such models are useful while modelling count data time series with structural breaks. The Bayesian and Markov Chain Monte Carlo (MCMC) procedures for the estimation of the parameters and break points of such models are discussed. We illustrate the model and estimation procedure with the help of a simulation study. The proposed model is applied to the two real biometrical data sets.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.823920 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:12:p:2653-2669
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.823920
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().