Joint modeling of censored longitudinal and event time data
Francis Pike and
Lisa Weissfeld
Journal of Applied Statistics, 2013, vol. 40, issue 1, 17-27
Abstract:
Censoring of a longitudinal outcome often occurs when data are collected in a biomedical study and where the interest is in the survival and or longitudinal experiences of a study population. In the setting considered herein, we encountered upper and lower censored data as the result of restrictions imposed on measurements from a kinetic model producing “biologically implausible” kidney clearances. The goal of this paper is to outline the use of a joint model to determine the association between a censored longitudinal outcome and a time to event endpoint. This paper extends Guo and Carlin's [6] paper to accommodate censored longitudinal data, in a commercially available software platform, by linking a mixed effects Tobit model to a suitable parametric survival distribution. Our simulation results showed that our joint Tobit model outperforms a joint model made up of the more naïve or “fill-in” method for the longitudinal component. In this case, the upper and/or lower limits of censoring are replaced by the limit of detection. We illustrated the use of this approach with example data from the hemodialysis (HEMO) study [3] and examined the association between doubly censored kidney clearance values and survival.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.725468 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:1:p:17-27
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2012.725468
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().