Segmentation, alignment and statistical analysis of biosignals with application to disease classification
Sebastian Kurtek,
Wei Wu,
Gary E. Christensen and
Anuj Srivastava
Journal of Applied Statistics, 2013, vol. 40, issue 6, 1270-1288
Abstract:
We present a novel methodology for a comprehensive statistical analysis of approximately periodic biosignal data. There are two main challenges in such analysis: (1) the automatic extraction (segmentation) of cycles from long, cyclostationary biosignals and (2) the subsequent statistical analysis, which in many cases involves the separation of temporal and amplitude variabilities. The proposed framework provides a principled approach for statistical analysis of such signals, which in turn allows for an efficient cycle segmentation algorithm. This is achieved using a convenient representation of functions called the square-root velocity function (SRVF). The segmented cycles, represented by SRVFs, are temporally aligned using the notion of the Karcher mean, which in turn allows for more efficient statistical summaries of signals. We show the strengths of this method through various disease classification experiments. In the case of myocardial infarction detection and localization, we show that our method compares favorably to methods described in the current literature.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.785492 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:6:p:1270-1288
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.785492
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().