A SARIMAX coupled modelling applied to individual load curves intraday forecasting
Sophie Bercu and
Fr�d�ric Proïa
Journal of Applied Statistics, 2013, vol. 40, issue 6, 1333-1348
Abstract:
A dynamic coupled modelling is investigated to take temperature into account in the individual energy consumption forecasting. The objective is both to avoid the inherent complexity of exhaustive SARIMAX models and to take advantage of the usual linear relation between energy consumption and temperature for thermosensitive customers. We first recall some issues related to individual load curves forecasting. Then, we propose and study the properties of a dynamic coupled modelling taking temperature into account as an exogenous contribution and its application to the intraday prediction of energy consumption. Finally, these theoretical results are illustrated on a real individual load curve. The authors discuss the relevance of such an approach and anticipate that it could form a substantial alternative to the commonly used methods for energy consumption forecasting of individual customers.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.785496 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:6:p:1333-1348
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.785496
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().