A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data
Z. Rezaei Ghahroodi and
M. Ganjali
Journal of Applied Statistics, 2013, vol. 40, issue 7, 1425-1445
Abstract:
A random-effects transition model is proposed to model the economic activity status of household members. This model is introduced to take into account two kinds of correlations; one due to the longitudinal nature of the study, which will be considered using a transition parameter, and the other due to the existing correlation between responses of members of the same household which is taken into account by introducing random coefficients into the model. The results are presented based on the homogeneous (all parameters are not changed by time) and non-homogeneous Markov models with random coefficients. A Bayesian approach via the Gibbs sampling is used to perform parameter estimation. Results of using random-effects transition model are compared, using deviance information criterion, with those of three other models which exclude random effects and/or transition effects. It is shown that the full model gains more precision due to the consideration of all aspects of the process which generated the data. To illustrate the utility of the proposed model, a longitudinal data set which is extracted from the Iranian Labour Force Survey is analysed to explore the simultaneous effect of some covariates on the current economic activity as a nominal response. Also, some sensitivity analyses are performed to assess the robustness of the posterior estimation of the transition parameters to the perturbations of the prior parameters.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.785653 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:40:y:2013:i:7:p:1425-1445
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.785653
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().