Mixed ranked set sampling design
Abdul Haq,
Jennifer Brown,
Elena Moltchanova and
Amer Ibrahim Al-Omari
Journal of Applied Statistics, 2014, vol. 41, issue 10, 2141-2156
Abstract:
The main focus of agricultural, ecological and environmental studies is to develop well designed, cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one method that leads to accomplish such objectives by incorporating expert knowledge to its advantage. In this paper, we propose an efficient sampling scheme, named mixed RSS (MxRSS), for estimation of the population mean and median. The MxRSS scheme is a suitable mixture of both simple random sampling (SRS) and RSS schemes. The MxRSS scheme provides an unbiased estimator of the population mean, and its variance is always less than the variance of sample mean based on SRS. For both symmetric and asymmetric populations, the mean and median estimators based on SRS, partial RSS (PRSS) and MxRSS schemes are compared. It turns out that the mean and median estimates under MxRSS scheme are more precise than those based on SRS scheme. Moreover, when estimating the mean of symmetric and some asymmetric populations, the mean estimates under MxRSS scheme are found to be more efficient than the mean estimates with PRSS scheme. An application to real data is also provided to illustrate the implementation of the proposed sampling scheme.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.909781 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:10:p:2141-2156
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.909781
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().